

Graphics Processing Unit (GPU) Performance on an

N-Body Problem

by Pat Collins

ARL-CR-0629 August 2009

prepared by

Lockheed Martin Corporation
PMB-203

939-I Beards Hill Rd.
Aberdeen, MD 21001

under contract

GS04T08DBC0020

Approved for public release; distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005

ARL-CR-0629 August 2009

Graphics Processing Unit (GPU) Performance on an
N-Body Problem

Pat Collins

Computational and Information Sciences Directorate, ARL

prepared by

Lockheed Martin Corporation
PMB-203

939-I Beards Hill Rd.
Aberdeen, MD 21001

under contract

GS04T08DBC0020

Approved for public release; distribution unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

August 2009
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

January to March 2009
5a. CONTRACT NUMBER

GS04T08DBC0020
5b. GRANT NUMBER

4. TITLE AND SUBTITLE

Graphics Processing Unit (GPU) Performance on an N-Body Problem

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Pat Collins

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Lockheed Martin Corporation
PMB-203
939-I Beards Hill Rd.
Aberdeen, MD 21001

8. PERFORMING ORGANIZATION

 REPORT NUMBER

ARL-CR-0629

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: RDRL-CIH-M
Aberdeen Proving Ground, MD 21005

11. SPONSOR/MONITOR'S REPORT

 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The objective of this study is to evaluate the performance of clusters of Nvidia graphics processing units on an N-body
problem derived from the computation of vector potentials. Two clusters are used for this purpose. The first is a 2-node, Intel
Xeon system with a single Tesla S870 system cross connected to each node. The second is a 20-node Opteron system with
one Quadro FX 5600 GPU per node. The results show a significant increase in performance when GPUs accelerate the
computation. With 16 GPUs and a sufficiently large problem, an estimated 3 teraflops is achieved.

15. SUBJECT TERMS

Graphics Processing Units, N-body, Vector Potential, CUDA

16. SECURITY CLASSIFICATION OF:
19a. NAME OF RESPONSIBLE PERSON

Pat Collins

a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified

17. LIMITATION
OF
ABSTRACT

UU

18. NUMBER
OF
PAGES

26
19b. TELEPHONE NUMBER (Include area code)

(410) 278-5061

 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

Contents

Acknowledgments v

Executive Summary vii

1. Introduction 1

2. N-Body Problem 1

3. Algorithm 2

4. Results 5

4.1 Test Systems . 5

4.2 Test Results . 6

5. Conclusions 12

References 13

List of Symbols, Abbreviations, and Acronyms 14

Distribution 15

iii

List of Figures

1 Computational tile structure for a 16 × 16 influence matrix 3

2 Compute times on the aspen cluster . 7

3 Compute times on the tesla cluster . 8

4 Approximate gigaflops on the aspen cluster 8

5 Approximate gigaflops on the tesla cluster 9

6 Scalability on the aspen cluster . 9

7 Scalability on the tesla cluster . 10

8 Single GPU performance for various thread block sizes 10

List of Tables

1 Test systems . 5

2 GPU properties . 6

3 L2 norms of the solutions and their differences 11

4 L∞ norms of the solutions and their differences 11

iv

Acknowledgments

This work was sponsored by the U.S. Army Research Laboratory’s Advanced Computing

and Computational Sciences Division in coordination with the Advanced Computing

Strategic Technology Initiative.

v

vi

INTENTIONALLY LEFT BLANK.

Executive Summary

This study measures the performance of clusters of Nvidia Graphics Processing Units

(GPUs) on an N -body problem that computes the curl of a vector potential. Two clusters

are used in this study. The first is a 2-node, Intel Xeon system with a single Tesla S870

system cross connected to each node. The second is a 20-node, Advanced Micro Devices

(AMD) Opteron system with one Quadro FX 5600 GPU per node. The results from both

of these systems show a significant increase in performance when GPUs are used to

accelerate the computation. With 16 GPUs and a sufficiently large problem, an estimated

3 teraflops was achieved.

vii

viii

INTENTIONALLY LEFT BLANK.

1. Introduction

The objective of this study is to evaluate the performance of clusters of Nvidia Graphics

Processing Units (GPUs) on an N -body problem using the direct method, or O(N2)

algorithm. Computations of vector potentials were chosen because they have applications

in many different fields. For instance, in computational fluid dynamics the curl of a vector

potential relates vorticity to velocity, and in computational electromagnetics it relates

current density to the magnetic field. Such computations generally require the solution of

an N -body problem. Even with today’s fast computers, solving this with an O(N2)

algorithm places a significant limit on the size of the problem that can be solved in a

reasonable amount of time. Fast multipole methods (FMM) can reduced this to

O(N log N); however, the FMM still relies on an O(N2) algorithm for all near field

interactions so enhancing the performance of the direct method is still relevant. Significant

improvements in the performance of an FMM algorithm could be achieved when combined

with a fast O(N2) algorithm, such as one implemented on a GPU, resulting in performance

gains for a wide class of problems.

This problem maps well to the Nvidia GPU architecture because the computation requires

O(N2) operations, but properly arranged, the communication requires only O(N). The

algorithm used to map this problem to the GPU is based on the one described in chapter

31 of reference 1 and implemented on a single GPU in the Nvidia Compute Unified Device

Architecture (CUDA) Software Development Kit (SDK) code (2).

The rest of this report is arranged as follows: the N -body problem and the algorithm are

described in sections 2 and 3, respectively. Section 4 gives the results and section 5 the

conclusions.

2. N-Body Problem

The vector potential A, as defined in Karamcheti (3), is

A(r, t) =
1

4π

∫ ∫

R

∫

Ω(s, t)

| r − s |
dτs, (1)

where Ω is the source distribution vector. The curl of A, the objective of the computation

and defined here as V, is

V(r, t) = ∇r × A(r, t) =
1

4π

∫ ∫

R

∫

∇r ×
Ω(s, t)

| r − s |
dτs (2)

1

where subscript r represents differentiation with respect to the coordinates of the

evaluation point, or field point. The coordinates of the source points are represented as s.

The assumption of point sources of Ω greatly simplifies the integral. Given an

infinitesimally small region region of the domain, say δτ , with source Ω located at s, the

influence at r is approximated by

δV(r, t) =
1

4π
∇r ×

Ω(s, t)

| r − s | +ε
δτs. (3)

where ε is some small number introduced to prevent division by zero. The singularity is a

result of the point source assumption; it integrates out in the full volume integral. In

practice, a smoothing function is applied to remove the singularity. A complicated

smoothing function would require additional logic that would impact GPU performance.

This was not done. Therefore, with the simple smoothing function of adding ε to the

denominator, the performance results from this study should be considered an upper

bound.

Summing the influence of all source points on all field points is the N -body problem to be

solved. The set consisting of the field points may or may not be equivalent to the set of

field points. For this study, the sets of source and field points are chosen randomly and are

different.

3. Algorithm

The algorithm used is based on the one described in chapter 31 of reference 1 and

implemented in the “nbody” Nvidia CUDA SDK code (2). It is generalized to compute the

vector potential and to handle cases where the number of sources and field points are

different, and modified to run on multiple GPUs. For ease of programming, however, N

and M are assumed to be powers of 2. Although the code was verified for cases where

N 6= M , to avoid the additional complexity of comparing results, this study will present

data only for M = N .

The influence of source points on field points can be represented as a matrix whose rows

are associated with field points and columns with source points. If {aij} is that matrix,

then element aij is the influence of the jth source point on the ith field point. Summing the

ith row gives the influence of all source points on the ith field point. The algorithm

described here maps this computation efficiently to the GPU hardware. To use a GPU to

its fullest, it strives to perform the following:

• create a sufficient number of thread blocks to mask memory access latencies with

computations,

2

• maximize the computational work per memory access,

• minimize access to the device global memory (i.e., use shared memory where

possible), and

• coalesce device global memory access to avoid conflicts.

The algorithm divides the matrix into sub-matrices, assigning the computational work

accordingly while paying close attention to memory access patterns. These sub-matrices

are referred to as computational tiles. Figure 1 shows an example of an influence matrix

with N = M = 16. Each colored 4 × 4 sub-matrix represents a computational tile and each

row of the matrix is handled by a single thread; hence, there is a one-to-one

correspondences between threads and field points. In this example, the threads are grouped

into four blocks of four threads each, where each thread block is assigned four

computational tiles, see the left side of figure 1. Each tile operates on four source points.

Figure 1. Computational tile structure for a 16× 16 influence matrix.

The computational tiles are color coded to show data accessed patterns. At the top of

figure 1, the source point data, as it resides in device global memory, is shown in red, green,

yellow, and blue. As the computation proceeds serially, i.e., from left to right in figure 1,

each block accesses a different chunk of device global memory to avoid access conflicts. For

example, while working on tile 0, thread block 0 operates on red source data, block 2 on

green, etc. As is obvious from the figure, each subsequent tile is arranged so that global

3

memory bank conflicts are avoided. (Displaying the temporal progression using the color

scheme as in figure 1 takes liberties with the matrix analogy but hopefully without

confusion.) Processing of each computational tile starts with an efficient copy of source

point data from device global memory to processor shared memory. Each thread then

accesses all the source point data residing in shared memory for its assigned computations.

The high level algorithm is as follows:

• Proc 0 reads input data and the precomputed solution.

• Proc 0 sends all source data to all processors.

• Proc 0 evenly distributes the field points to the processors.

• For each processor, do the following:

– Initialize the assigned GPU device.

– Start the compute timer.

– Allocate the device global memory on the GPU for the source data, field points,

and results.

– Copy the source data and field points from the central processing unit (CPU) to

the GPU.

– Map the computation to the GPU hardware (i.e., define thread blocks).

– For each thread block do the following:

∗ Assign one thread per field point.

∗ For each thread, do the following:

· Copy a portion of the computational tile’s assigned source data from

device global memory to shared memory.

· Compute the influence of all the tile’s source points on the field points

associated with the threads.

· Write the results to the GPU global memory.

– Copy the results from GPU to CPU.

– Stop the compute timer.

• Proc 0 gathers all GPU compute times and reports the maximum time.

• Proc 0 gathers the results.

• Proc 0 compares the GPU solution to the precomputed solution.

This algorithm is written in C/C++ using CUDA (4) and open Message Passing Interface

(MPI).

4

4. Results

4.1 Test Systems

The test systems used are referred to as the tesla and aspen clusters. The tesla cluster is a

2-node system where each node has a dual 3 GHz quad-core Intel Xeon processor.

Connected to this system is an Nvidia S870 GPU computing system with four C870 GPUs.

Two GPUs are connected to each of the nodes via a Peripheral Component Interconect

(PCI) Express connector. The nodes are connected via a 1 Gbps Ethernet network. The

aspen cluster is a 20-node system where each node consists of dual quad-core AMD

Opteron 2350 processors and one Nvidia Quadro FX 5600 GPU. The first two nodes have

two GPUs each; however, the second GPU was not used during the tests. Table 1

summarizes these properties and table 2 gives additional specifications on the GPUs.

Except where noted, the data in table 2 applies to both the Tesla C870 (tesla cluster) and

the Quadro FX 5600 (aspen cluster).

Table 1. Test systems.

Aspen Tesla

CPU Dual Quad-Core AMD Opteron 2350 Dual Quad-Core Intel Xeon E5450
GPU 1 Quadro FX 5600 / node 2 Tesla C890 / node

Node Interconnect Myri-10G Myrinet Gigabit Ethernet
GPU Interconnect MCP55 PCI Express bridge (33 MHz);

Internal Connection
5400 Chipset PCI Express (33 MHz);
External Connection w/ switch

5

Table 2. GPU properties.

Nvidia Tesla C870 and Quadro FX 5600

Number of multi-processors (MP) 16

Number of threads processors per MP 8
Total number of thread processors 128

Major revision number 1
Minor revision number 3 (tesla); 0 (aspen)

Total amount of global memory 1610350592 bytes
Total amount of constant memory 65536 bytes

Total amount of shared memory per block 16384 bytes
Total number of registers available per block 8192

Warp size 32
Maximum number of threads per block 512

Maximum sizes of each dimension of a block 512 x 512 x 64
Maximum sizes of each dimension of a grid 65535 x 65535 x 1

Maximum memory pitch 262144 bytes
Texture alignment 0 (tesla); 256 (aspen)

Clock rate 1.35 GHz

4.2 Test Results

The results show significant decrease in compute times when GPUs are used. Figures 2 and

3 show the solution times in seconds on the aspen and tesla clusters, respectively, for

various problem sizes and numbers of GPUs. A thread block size of 256 is used for these

calculations. The x-axis is the problem size and the y-axis is GPU compute times

measured, as indicated in section 3. Compute times using a single CPU core on each

cluster are also shown for comparison. The problem sizes run from N = 212 through 218.

Figures 4 and 5 show the estimated gigaflops for each of the same runs. These estimates

are based on 29 floating point operations per source point-field point interaction.

GPU performance on the aspen cluster exceeds the CPU performance even for the smallest

problem size considered, N = 212, but good scalability is not achieved until N > 216. The

tesla cluster shows similar performance for large N ; however, for relatively small N , where

communication latencies are more apparent, performance is reduced (see figures 2 and 3).

On the tesla cluster, two C870 GPUs are connected to a node through a single PCI

Express external interface and a switch. The aspen cluster has one GPU per node

connected through an internal PCI connection. (Two nodes of the aspen cluster have two

GPUs per node but no more then one was used during these tests.) The performance

difference for small N between the aspen and tesla clusters with a single GPU is due to the

different PCI communication latencies. The fact that performance further degrades for

small N when more then one GPU is used on the tesla cluster, see figure 3, is because two

GPUs share a single PCI interface through a switch.

6

The results are most dramatic when N is large. For N = 218, the solution time is 10 s on a

single Nvidia Quadro FX 5600 GPU (200 gigaflops) versus 33 min (1 gigaflop) on the

native Opteron processor. On the tesla cluster, it takes 11 s (174 gigaflops) when using a

single Nvidia Tesla C870 GPU versus 33 min (1 gigaflop) on the native Xeon processor.

Even more impressive is that it takes less then 1 s to solve such a large N -body problem on

the aspen cluster using 16 GPUs, achieving almost 3 teraflops. It should be noted that

with more effort the CPU performance may have been improved, especially if more than

one core is used, but that was not the objective. Besides, the GPU performance far exceeds

what would theoretically be possible on the CPUs, so there was little motivation for this

comparison.

Theoretical peak gigaflops on each of these GPUs is advertised at 518 gigaflops; however,

this counts Multiply ADD (MADD) instructions as two floating point operations. On the

CUDA Zone Forum, some believe a more reasonable number is between 170 and 340

gigaflops. This is in line with the results obtained in this study.

Figures 6 and 7 show the speed-up achieved using multiple GPUs relative to a single GPU

for various problem sizes. The data shows good scalability is achieved only for large

problems. On the tesla cluster, the communication overhead for small problems relative to

the computational work is high causing the speed-up to drop below 1.

Figure 8 shows the effect of thread block size on a single GPU of the tesla cluster. The

data indicates that for block sizes greater than 32, the performance is essentially the same.

 0.0625

 0.25

 1

 4

 16

 64

 256

 1024

 4096

 4096 8192 16384 32768 65536 131072 262144

s
e
c
s

N

1 GPU
2 GPUs
4 GPUs
8 GPUs

16 GPUs
1 Opteron CPU

Figure 2. Compute times on the aspen cluster.

7

 0.0625

 0.25

 1

 4

 16

 64

 256

 1024

 4096

 4096 8192 16384 32768 65536 131072 262144

s
e
c
s

N

1 GPU
2 GPUs
4 GPUs

1 Xeon CPU

Figure 3. Compute times on the tesla cluster.

 0.25

 1

 4

 16

 64

 256

 1024

 4096

 4096 8192 16384 32768 65536 131072 262144

G
F

L
O

P
S

N

1 GPU
2 GPUs
4 GPUs
8 GPUs

16 GPUs
1 Opteron CPU

Figure 4. Approximate gigaflops on the aspen cluster.

8

 0.25

 1

 4

 16

 64

 256

 1024

 4096

 4096 8192 16384 32768 65536 131072 262144

G
F

L
O

P
S

N

1 GPU
2 GPUs
4 GPUs

1 Xeon CPU

Figure 5. Approximate gigaflops on the tesla cluster.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
p
e
e
d
-U

p

of GPUs

N=16384
N=32768
N=65536

N=131072
N=262144

Figure 6. Scalability on the aspen cluster.

9

 4

 3

 2

 1

 0
 4 3 2 1

S
p
e
e
d
-U

p

of GPUs

N=16384
N=32768
N=65536

N=131072
N=262144

Figure 7. Scalability on the tesla cluster.

 1

 4

 16

 64

 256

 1024

 4096

 4096 8192 16384 32768 65536 131072 262144

G
F

L
O

P
S

N

p=256
p=128
p=64
p=32

Figure 8. Single GPU performance for various thread block sizes.

10

Tables 3 and 4 give the L2 and L∞ norms of the CPU solution, V , and GPU solution, W ,

and the norms of their difference and relative difference for various problem sizes on the

aspen cluster with eight GPUs. These norms are computed as follows. If V
j

i is the CPU

solution where j is the index of the field point and i the index of the solution vector at j,

and if W
j
i is the same for the GPU computed solution, then the norms are given by

‖V ‖
2

=

√

∑N

j=1

∑

3

i=1
V

j
i

2

3N
, ‖V ‖

∞
= max

i,j
|V j

i | (4)

‖W − V ‖
2

=

√

∑N

j=1

∑

3

i=1

(

W
j
i − V

j
i

)2

3N
, ‖W − V ‖

∞
= max

i,j
|W j

i − V
j

i | (5)

‖W − V ‖
2r

=

√

√

√

√

∑N

j=1

∑

3

i=1

(

W
j

i
−V

j

i

V
j

i

)2

3N
, ‖W − V ‖

∞r
= max

i,j
|
W

j
i − V

j
i

V
j
i

| (6)

with similar formulas for ‖W‖
2

and ‖W‖
∞

.

Table 3. L2 norms of the solutions and their differences.

N ‖V ‖
2

(CPU) ‖W‖
2

(GPU) ‖W − V ‖
2

‖W − V ‖
2r

4096 7.36869e+00 7.36869e+00 1.94694e-06 5.96216e-05

8192 5.70731e+00 5.70731e+00 4.92994e-06 1.31579e-05
16384 1.34827e+01 1.34827e+01 2.66668e-05 2.55242e-05

32768 2.22855e+01 2.22855e+01 4.13682e-05 7.43773e-03
65536 5.22089e+01 5.22092e+01 5.15852e-04 1.55937e-04

131072 1.06966e+02 1.06966e+02 9.58753e-04 2.65740e-04
262144 1.68857e+02 1.68857e+02 9.53178e-04 3.86570e-04

Table 4. L∞ norms of the solutions and their differences.

N ‖V ‖
∞

(CPU) ‖W‖
∞

(GPU) ‖W − V ‖
∞

‖W − V ‖
∞r

4096 5.55356e+02 5.55356e+02 9.15527e-05 3.09944e-06

8192 1.91733e+02 1.91733e+02 1.83105e-04 1.10865e-05
16384 1.08433e+03 1.08433e+03 4.76074e-03 4.19617e-05

32768 9.40967e+02 9.40967e+02 1.98364e-03 2.67029e-04
65536 1.15320e+04 1.15323e+04 2.22656e-01 5.07355e-04

131072 2.63124e+04 2.63122e+04 5.12695e-01 5.15580e-04
262144 8.35248e+03 8.35227e+03 2.07031e-01 4.88281e-03

11

Roundoff errors cause the solutions to be slightly different as indicated by the data. As N

increases, the norms of the differences increase for two reasons. The errors accumulate

because of the increased operation count and the absolute errors increase because the

magnitude of the solution increases. This happens because the physical domain, which is

chosen to be the unit cube, remains the same but the number of source points increases.

Based on the data, the solutions are considered numerically the same within roundoff.

5. Conclusions

The results show that this N -body problem achieves a significant 200 gigaflops on a single

GPU and almost 3 teraflops on a cluster of 16 GPUs. As a comparison, if one could

achieve 3 gigaflops on a single 3 GHz CPU, then it would require at least 66 CPUs to equal

1 GPU. This represents a lower bound on the number of CPUs needed. One must, of

course, pay a cost to enjoy such results. This cost is an increase in programming

complexity. The N -body solution is straight forward and easy to program on a CPU. On

the GPU, however, it has to be tailored to the architecture. In this case, the problem was

broken up into computational tiles and much care was taken to avoid memory access

conflicts. The measured performance gains, however, more than compensated for the

increased complexity. Moreover, the Nvidia CUDA programming language greatly eased

the programming task.

12

References

[1] Nguyen, H. GPUGems 3 ; Addison-Wesley Professional, August 2007.

[2] Nvidia Corporation, 2008. Nvidia CUDA SDK 10 Linux Version 1.10.1203.1115.

[3] Karamcheti, K. Principles of Ideal-Fluid Aerodynamics; Robert E. Krieger Publishing

Company, 1966.

[4] Nvidia Corporation, 2009. http://www.nvidia.com (last accessed in March 2009).

13

List of Symbols, Abbreviations, and Acronyms

AMD advanced micro devices

CPU central processing unit

CUDA compute unified device architecture

FMM fast multipole method

GPU graphics processing unit

MADD Multiply ADD

MPI message passing interface

PCI peripheral component interconnect

SDK software development kit

14

15

NO. OF
COPIES ORGANIZATION

 1 ADMNSTR
 ELEC DEFNS TECHL INFO CTR
 ATTN DTIC OCP
 8725 JOHN J KINGMAN RD STE 0944
 FT BELVOIR VA 22060-6218

 1 HC DARPA
 ATTN IXO S WELBY
 3701 N FAIRFAX DR
 ARLINGTON VA 22203-1714

 1 CD OFC OF THE SECY OF DEFNS
 ATTN ODDRE (R&AT)
 THE PENTAGON
 WASHINGTON DC 20301-3080

 1 HC US ARMY RSRCH DEV AND
 ENGRG CMND
 ARMAMENT RSRCH DEV AND
 ENGRG CTR
 ARMAMENT ENGRG AND
 TECHNLGY CTR
 ATTN AMSRD AAR AEF T J MATTS
 BLDG 305
 ABERDEEN PROVING GROUND MD
 21005-5001

 1 HC PM TIMS, PROFILER (MMS-P)
 AN/TMQ-52
 ATTN B GRIFFIES
 BUILDING 563
 FT MONMOUTH NJ 07703

 1 HC US ARMY INFO SYS ENGRG CMND
 ATTN AMSEL IE TD A RIVERA
 FT HUACHUCA AZ 85613-5300

 1 HC COMMANDER
 US ARMY RDECOM
 ATTN AMSRD AMR
 W C MCCORKLE
 5400 FOWLER RD
 REDSTONE ARSENAL AL 35898-5000

 1 HC US GOVERNMENT PRINT OFF
 DEPOSITORY RECEIVING SECTION
 ATTN MAIL STOP IDAD J TATE
 732 NORTH CAPITOL ST NW
 WASHINGTON DC 20402

NO. OF
COPIES ORGANIZATION

 2 HCS UNIV OF MARYLAND
 DEPT OF MECHANICAL
 ENGINEERING
 ATTN P BERNARD
 GLENN L MARTIN HALL
 COLLEGE PARK MD 20742-5121

 5 HCS HPCMO
 DOD HIGH PERFORMANCE
 COMPUTING MODERNIZATION
 PROGRAM OFFICE
 ATTN C HENRY
 ATTN DR L DAVIS
 ATTN DR R CAMPBELL
 ATTN B COMES
 ATTN DR A MARK
 10501 FURNACE ROAD, SUITE 101
 LORTON, VA 22079

 2 HCS US ARMY RDECOM-TARDEC
 ATTN AMSRD TAR R
 T CURRIER, MS157
 D GORSICH, MS205
 WARREN, MI 48397-5000

 17 HCS US ARMY RSRCH LAB
 ATTN RDRL CIH
 B SHEROKE
 C NIETUBICZ
 D THOMPSON
 ATTN RDRL CIH C
 B HENZ
 D RICHIE
 D SHIRES
 J CLARKE
 K KIRK
 M POTTS
 P CHUNG
 S DINAVAHI
 S PARK
 ATTN RDRL CIH M
 P COLLINS
 M KNOWLES
 M MOTSKO
 ATTN RDRL CIH S
 D BROWN
 T KENDALL
 ABERDEEN PROVING GROUND MD
 21005

16

NO. OF
COPIES ORGANIZATION

 1 HC US ARMY RSRCH LAB
 ATTN RDRL VTU V S WILKERSON
 BLDG 390
 ABERDEEN PROVING GROUND MD
 21005

 3 HC US ARMY RSRCH LAB
 ATTN RDRL WMB C J SAHU
 ATTN RDRL WMB C K HEAVEY
 ATTN RDRL CIM G T LANDFRIED
 BLDG 4600
 ABERDEEN PROVING GROUND MD
 21005

 1 HC US ARMY RSRCH LAB
 ATTN RDRL WMB D M NUSCA
 ABERDEEN PROVING GROUND MD
 21005-5056

 4 HC DIRECTOR
 US ARMY RSRCH OFFICE
 ATTN RDRL ROI M
 J MYERS
 DR J M COYLE
 ATTN RDRL ROI C
 DR C WANG, CHIEF
 ATTN RDRL ROE

 DR T DOLIGALSKI
 ACTING DIRECTOR

 PO BOX 12211
 RESEARCH TRIANGLE PARK NC
 27709

 1 HC US ARMY RSRCH LAB
 ATTN RDRL CIH C J ROSS
 ABERDEEN PROVING GROUND MD
 21005

 4 HCS US ARMY RSRCH LAB
 ATTN RDRL CIM P TECHL PUB
 ATTN RDRL CIM L TECHL LIB
 ATTN RDRL CI R NAMBURU
 ATTN IMNE ALC HRR
 MAIL & RECORDS MGMT
 ADELPHI MD 20783-1197

TOTAL: 48 (1 PDF, 1 CD, 46 HCS)

